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A M P L I T U D E  E Q U A T I O N S  F O R  A S Y S T E M  

W I T H  T H E R M O H A L I N E  C O N V E C T I O N  

S. B .  K o z i t s k i i  UDC 551.465.15:551.468.81 

The multiple scale expansion method is used to derive amplitude equations for a system with 
thermohaline convection in the neighborhood of Hopf and Taylor bifurcation points and at 
the double zero point of the dispersion relation. A complex Ginzburg-Landau equation, a 
Newell-Whitehead-type equation, and an equation of the ~4 type, respectively, were obtained. 
Analytic expressions for the coefficients of these equations and their various asymptotic forms 
are presented. In the case of Hopf bifurcation for low and high frequencies, the amplitude 
equation reduces to a perturbed nonlinear Shroedinger equation. In the high-frequency limit, 
structures of the type of "dark" solitons are characteristic of the examined physical system. 

In t roduc t i on .  In the 1980-1990s, a number of papers devoted to the formation of structures in 
the neighborhood of Hopf bifurcation points for systems with translational invariance along the horizontal 
appeared in the literature on double-diffusive convection. Oscillations in such systems can give rise to waves 
of various types (for example, standing, traveling, modulated, and random), which are conveniently studied 
by constructing amplitude equations [1]. An amplitude equation for a system with convection was first 
obtained by Newell and Whitehead [2]. It describes two-dimensional thermal convection and has the form of 
a generalized Ginzburg-Landau equation. Coulett et al. [3] proposed a system of Ginzburg-Landau equations 
that describes traveling, double-diffusive waves propagating on both sides in a liquid strip which is infinite 
along the horizontal: 

(Or + sOx)AR = (co + icl)AR + (c2 + ic3)O~AR -- (c4 + iCh)[AR[2AR -- (c6 + icT)[AL[2AR, 
(1) 

(Or - SOx)AL = (co + icl)AL + (e2 + ic3)02xAL -- (c4 + iCh)]AL[2AL -- (c6 + icT)]An[2AL. 

The form of these equations is postulated from general considerations (such as considerations of symmetry); 
it is assumed that the coefficients in these equations should be derived by asymptotic methods from the 
partial equations describing a particular physical system. 

However, a thorough and well-founded derivation of amplitude equations for double-diffusive systems is 
not available in the literature there. In many papers, the form of the coefficients in Eqs. (1) is not discussed. In 
some papers, these coefficients are obtained from various physical considerations. Thus, Cross [4], examining 
a system with convection for binary mixtures in the limit of low Hopf frequencies, set the coefficients Cl, 
c3, c5, and c7 in Eqs. (1) equal to zero as a first, crude, approximation, motivating this by empirical data 
indicating an analogy between the case considered and the case of purely temperature convection. Clearly, 
such assumptions on the form of the coefficients can be rigorously justified only in a rigorous mathematical 
derivation of amplitude equations. 

In papers on double diffusive convection of binary mixtures in bulk and porous media, the Hopf 
frequency turns out to be unity in the case of oscillatory convection. For thermohaline convection, it is 
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reasonable to consider the asymptotic behavior for the Hopf frequency tending to infinity. In this limit, 
the amplitude equation should become the nonlinear Shroedinger equations governing internal waves in two- 
dimensional geometry. 

In the present paper, using the derivative expansion method, which is a version of the multiple-scale 

expansion method, we derive amplitude equations for double-diffusive waves in two-dimensional, horizontally 
infinite geometry in the neighborhood of the Hopf and Taylor bifurcation points and the double zero point of 
the dispersion relation. Idealized boundary conditions are used. In the case of Hopf bifurcation, the amplitude 
equation for waves propagating only in one direction is examined. Analytic expressions for the coefficients 
of these equations are obtained. Their various asymptotic forms are studied, and asymptotic forms of the 
amplitude equations for various parameter values are discussed. 

1. F o r m u l a t i o n  of  t he  P r o b l e m ;  Basic  Equa t ions .  The initial equations describe two-dimensional 
thermohaline convection in a liquid layer of thickness h bounded by two infinite, plane, horizontal boundaries. 
The liquid moves in a vertical plane and the motion is described by the stream function ~(t, x, z). The 
horizontal x and vertical z space variables are used; the time is denoted by t. It is assumed that there are no 
distributed sources of heat and salt, and on the upper and lower boundaries of the regions, these quantities 
have constant values. Hence, the main distribution of temperature and salinity is linear along the vertical 
and does not depend on time. The variables O(t, x ,  z)  and ~(t, x, z) describe variations in the temperature 
and salinity about this main distribution. There are two types of thermohaline convection: the finger type, 
in which the warmer and more saline liquid is at the upper boundary of the regions, and the diffusive type, 
in which the temperature and salinity are greater at the lower boundary. In the present paper, we study the 

second type. 
The evolution equations in the Boussinesq approximation in dimensionless form are a system of non- 

linear equations in first-order partial derivatives with respect to time that depend on four parameters: the 
Prandtl number a, the Lewis number r (0 < r < 1), and the temperature RT and salinity Rs Rayleigh 
numbers [5, 6]: 

.(or -  A)A.e + G(RsOx  - Rr0 0) = - J ( e ,  AV), (2) 
(Or - A)O - c9~:~, = -J ( .g , ,  0), (cgt - T A ) ~  -- Oz~/' ---- - J ( ~ ,  ~). 

Here we have introduced the Jacobian J ( f ,  g) = O z f  O z g - O z g  O._f. The boundary conditions for the dependent 
variables are chosen to be zero, which implies that the temperature and salinity at the boundaries of the 
region are constant, the vortex vanishes at the boundaries, and the boundaries are impermeable: 

~b=020=O=~c=O at z=O, 1. (3) 

In the literature, these boundary conditions are usually called free-slip conditions or simply free conditions 

since the horizontal velocity component at the boundary does not vanish. 
The space variables are made nondimensional with respect to the thickness of the liquid layer h. As 

the time scale, we use the quantity to = h 2 / x ,  where X is the thermal diffusivity of the liquid. The vertical 
and horizontal components of the liquid-velocity field are defined by the formulas 

x Ox , = 0 .9 .  V Z  ~--- -~  ~ 

The dimensional temperature T and salinity S are given by the relations 

T ( t ,  x ,  z)  = 7'_ + 5T[1 - z + O(t, x ,  z)], S ( t ,  x ,  z)  = S _  + 5S[1 - z + ~(t,  x ,  z)]. 

Here ~T = T+ - T_, 6S = S+ - S_, and T+, T_ and S+, S_ are the temperatures and salinities on the 
lower and upper boundaries of the region, respectively. The temperature and salinity Rayleigh numbers can 

be expressed in terms of the parameters of the problem: 

g a h  a g~/h a 
R T  = (ST, R s  = 6S.  

X v  k v  
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Here g is tile acceleration of gravity, ~ is the viscosity of the liquid, and a and 7 are the temperature  and 

salinity coefficient of cubic expansions. 
2. D i s p e r s i o n  R e l a t i o n  a n d  I t s  C o n s e q u e n c e s .  We consider a system of partial differential 

equations that  is derived by linearization of the initial system (2) in the neighborhood of the trivial solution: 

( a ,  - ~ A ) / v r  + o ( R s a ~  - R : r a x S )  = O, ( a t  - A ) O  - a:y:  : O. ( a t  - 7 - A ) ~  - 0 ~ r  = 0.  (4 )  

These equations are solved subject to boundary conditions (3) by the method of separation of variables. We 

seek a solution in the form 

= [A1 exp (At - i 3 z )  + A 1  exp (At  + i3x)]  sin (~-z). (5) 

Here the bar denotes complex conjugation, ~ = ('8, 0, ~) is the vector of the basic dependent quantities, ~ is 
the horizontal wavenumber, and A1 = (aA1, aT1, as1)  is the amplitude vector. For aA1, we use the notation 

A -~ aA1. 
Substitution of (5) into (4) gives a system of algebraic equations for the variables aA1, aT1, and as1 

The condition for the existence of solutions of this system takes the form of an algebraic equation of the third 

order in A [6]: 

A 3 § (1 + 7- + G)k2A 2 + [@ + a + 7-a) + G(rs - rT)]kaA + G(rS -- 7-rT § 7-)k 6 ---- 0. (6) 

Here we introduced the wavenumber k 2 = zr 2 + 3 2, and the normalized Rayleigh numbers rT  ~-. RT/R* and 
rs  = Rs /R*,  where R* = k4(k/~3)  2 is the Rayleigh number, for which there is loss of stability of the steady 

state for purely tempera ture  convection. 
Equation (6) has three roots, two of which can be complex conjugate. In the physical system considered, 

loss of stability occurs when with change in the bifurcation parameters rT and r s ,  one or several roots pass 

through zero or gain a positive real part if they are complex. 
In the plane of the parameters rT and r s  (see Fig. 1), it is possible to distinguish regions I and II, 

on whose boundary there is loss of stability. The  boundary itself consists of two rectilinear segments. On 
segment 1, Taylor bifurcation is observed when one of the roots of the dispersion relation passes through 
zero, which gives rise to steady drum-type convection. On segment 2, Hopf bifurcation takes place when the 
real parts of two complex conjugate roots become positive. As a result, oscillatory convection occurs. The 
segments adjoin at the point C, at which the dispersion relation (6) has a double root. At this point, the 

parameter  values are defined by 

1 7 - + a  7 -2 l + a  
rT1 ---- ~ ? ' S 1  - -  

a 1-7- a 1-7- 
The straight lines on which Taylor and Hopf bifurcations are observed, are given, respectively, by the equations 

1 7- T + G  
r T - -  --rS +i, rT=I+--(I+7-+G)+-I--~_---Grs. 

T 
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The oscillation frequency of oscillatory convection is determined by the imaginary part A and is expressed in 
terms of the reduced frequency f~ as Im (A) = f~k 2, and f~ is, in turn, calculated from the formula 

1 - 7 -  f~2 = _72 + ~-~--~a rS (A ----- if~k2). 

Below, the reduced frequency f~ is called the Hopf frequency. 
3. Slow Var iab les  a n d  E x p a n s i o n  of  t h e  So lu t ions .  We consider the equations of double-diffusive 

convection in the neighborhood of a certain bifurcation point, for which the temperature and salinity Rayleigh 
numbers are denoted by 1~  and R~, respectively. In this case, the Rayleigh number is written as 

RT = R~(I + ~2~), Rs = R~(I + ~2r/s ). 

The values of U and Us are of the order of unity, and the small parameter ~ shows how far from the bifurcation 

point the examined system is located. To derive amplitude equations, we use the derivative expansion method 
of [7, 8]. We introduce the slow variables 

T1 = ~t, T2 = ~2t, X1 = ~x. 

Next, into the basic equations (2), we introduce tile extended derivative by the rules 

at -~ at + ~OT1 + ? O ~ ,  Ox -~ O~ + :-Ox,. (7) 

The dependent variables are represented as series in the small parameter: 

3 
r = ~-~ ~nr X1,Ti,T2) + O(~4). 

n=l  

Substituting these expressions into Eqs. (2) with derivatives extended according to (7) and grouping terms 
with the same power of ~, we obtain 

O(~): L*~P1 ---- 0, 

O(~2): L*r 2 = -(LIOT, -- L20Xl)~I - MI~P1, 

O(~3): n*~ 3 --- --(LIOT, -- n20x,)~2 - (LIOT2 + L30~1 + L4OX, 07"1 + L 5 ) ~ 1 -  M 2 ( ~ l ,  ~2)" 

Here the operators L1, L3, and L4 have diagonal form: diagL1 -- (A, 1, 1), diagL3 = (0t - 2era - 
4cr0~,--1,--1), and diagL4 = (20z, 0, 0); the operators L* and L2 can be written as 

L* = - 0 ~  Ot - / ~  0 , L2 = 1 20~ 0 . 

-0~ 0 Ot - r A  1 0 270z 

In the operator L5, only the upper row is different from zero: (0, -aR~uOz, aR*s~sOz ). The vectors M i  = 
(MAi, MTi, ~ISi) with nonlinear terms have the components 

AIA1 ---- J(g'l ,  A!h) ,  ~IT1 ---- J (~) l ,  81), l%-[Sl = J ( ~ l ,  ~1), 

~:ra2 = J(r + J(r Z,r + J(V,, 20~0x,r + 0./Xr O x , r  - 0 = ~  0 ~ r  

AIs~ = J(~l ,~2)  + J(r + c3:~1 0.'q~l - 0zel  0.x%~1. 

The systems obtained can be written in general form: 

L * ~  = Q~ + P~. 

Here the functions Q~ consist of terms that  are in resonance with the left side of the equations. The condition 
of the absence of secular terms in solutions of similar systems of equations is known (see [7, 8]) to reduce to 
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the requirement that  the functions Q~ and the solutions of the conjugate homogeneous equation (L*) • ~ [  = 0 
be orthogonal. We now derive the relation to which the condition of the absence of secular terms reduces in 
this case and which will be used below to derive amplitude equations. Let us consider the inhomogeneous 
system of algebraic equations that  is obtained from (4) by choosing the single-mode form (5) and substituting 

functions Qi = (QAi, QTi, Qsi) such that Q~ = Q~ exp (At - i~x) + Qi exp (At + i#x) into the right side of 
the homogeneous system: 

(A + ak2)(-k2)aAi + ~TR~i~aTi - aR*si3as~ = QAi, (8) 

(A 4. k2)aTi + i~adi -~ QTi, (A 4. 7-k2)asi 4. i.3aAi = Qsi. 

The solvability condition for this system of equations is formulated as the requirement that the right side be 
orthogonal to tile solution of the conjugate homogeneous system [9] [1. - i / 3aR~ / (A+k  2) and iZaR*s/(A+Tk2)] 
and reduces to the equation 

(A + k2)k6ar*sQsi - (A 4- wk2)k6crr~QTi - (A + k2)(A 4. Tk2)iZQAi ---- 0. (9) 

For A = 0, this relation is simplified: 

1 r.sQsi _ r~QTi iZ ji5:4 QAi  = O. 

4. D e r i v a t i o n  o f  A m p l i t u d e  E q u a t i o n s .  Let us assume that  the solution of the equations for ~1 
has the form (5) and the amplitude of this solution now depends on the slow variables: A = A(T1, X1, T2). 
Substi tuting this solution into the equations for ~2, we obtain a system of equations of the form (8) in which 
the functions Q2 are written as 

QA2 = k2OT~ A + i3cr A 4. wk 2 A 4. k 2 + 4k2 + Ox~ A. 

23" i3 OT1A + [1 2TS2 \ i l3 {1 ' "~ 
QT2 = ~ O T ,  \ A ~ : 2 ) 0 x ~ A ,  Q s 2 -  A+'rk  2 ~, A ~ 2 )  Ox'A" 

For this algebraic system to be solvable, it is necessary that  condition (9) be satisfied. At different bifurcation 
points, this condition is formulated as different equations. We consider successively the equations obtained 
from the solvability condition of the indicated system at the bifurcation points characteristic of the physical 
system considered. 

In the last relations, we substitute the value of A at the Hopf bifurcation point A = i~k  2 and set 
k2/~ 2 = 3 and /3 = 7r//V~, which is valid for the oscillation mode that  is the first to lose stability [5]. In 

addition, we take into account the relations 

, 1 c r + l  
i ~ + 7- (t22 + 1), r s -- (i22 + 7"2). 
a 1 - v  cr 1-7- r T 

Then, Eq. (9) can be written as 

0T, A +  V~rf~ 0x lA = 0 

and solved in general form by introducing the new slow variable X = X1 - v~Tr~T1. If we assume that  the 
amplitude A ( X ,  T2) depends on X1 and T1 only via X,  this equation becomes an identity. 

In the other cases, where we consider the system at the Taylor bifurcation point or at the double zero 
point, the solvability condition (9) has the form 

a + T ~OT~A + 2ifl - 3 0 ~ I A  = 0. (10) 1T ( i  - r )  r~ cr(l - r ) /  ~-" " 

If in this equation, as above, k2/~ 2 = 3, i.e., the least stable oscillation mode is considered, then OT1A = 0 
holds for the case of Taylor bifurcation. In the case of the double zero point, Eq. (10) is satisfied identically. 

5. A m p l i t u d e  E q u a t i o n  a t  t h e  H o p f  B i f u r c a t i o n  P o i n t .  We now write the solution for ~2 with 
the wavenumber for which there is loss of stability of the steady state: 
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~os = [A2 exp (if~kSt - i/3x) +fi~s exp ( - i ~ k S t  + i/3x)] sin 0rz) + B2 sin (2zrz). 

Here As = (aA2, aTS, ass)  and B2 = (0, bTs, bss) are vectors tha t  depend on the slow variables. The  compo- 
nents of these vectors have the values 

1 [A[ 2 1 ]A] s 
bT2 = bs2 - 6rr 1 + 12 s '  67r r '2 + f~s' 

2 1 ( 3i7r h 2 1 ( 3ire "~ 
aT2 ---- 97r2 1 +  iQ O x A  - ~ a A 2 ) ,  a s 2 -  97r2 T + i ~  O x A  - ~ a A 2 ) .  

Using the solutions given above, we formulate a system of equations from which it is possible to find qa 3. This 
system of equations, as the system for ~o 2, has the form (8). Then, we can write the functions Q3 as follows, 
retaining in them only terms with A ( X ,  Ts): 

3 1 3zr s 
z~2~OT2A~ - -~ (4if t  + 7a)O~A, + QA3 = ~ 2(1 - T-----~ [(a + 1)(7 - i~ )oS  - (a + 7)(1 + iQ)o]A~, 

) 

7r s 1 2 ,i~,/~ i [OToA- I (2,i~ + 5)O~A + -__ i~,AIAI ], 
Q T 3 =  3---~-1+i------~ - 3 " 4 1 

7r s 1 o] 
i v ~  1 1 ( 2 i ~ + 5 T ) 0 ~ A +  4 r iQ A[A[- Qs3 = 3---~ T + i ~  OT._,A-- 5 " - " 

Condition (9) for system (8) has the form 

(cr + 1)(7 -- iQ)Qs3  - (cr + T)(i - i~ )QT3  - (1 - "r)(i/3/k4)QA3 = O. 

After transformations,  we find that  the amplitude A ( X ,  Ts) should satis[v the complex Ginzburg-Landau 
equation 

OT~A = a I A  + 31A[AI s + 710~(A. (11) 

The coefficients in this equation are defined by the formulas 

3i~2[r/s(a + 1)(e s + 72)('ie + 1) - r/(a + v)(Ct s + 1)(' ie + r)]  

a]  = 4~[iQ + (1 + a + 7")](1 - 7) ' 
iTr s 

31 - -  8~'~' 71 = iQ + 2 (a + a r  + V)~ -- icrr 
~ [ i ~  + (i + ~ + ~)] 

6. E q u a t i o n  in t h e  F o r m  o f  a P e r t u r b e d  N o n l i n e a r  S h r o e d i n g e r  E q u a t i o n .  For further 
investigation, the equation obtained can be brought to a more convenient form. We set qs = 0. This implies 
that  the behavior of the system can be controlled by changing the tempera ture  gradient in the layer, while 
the salinity gradient remains constant and equal to the critical value. The coefficient mR (ial / '~  = aR  + i~z) 
is eliminated from the equation by changing the dependent variable by the formula A = A'  exp ( - i a R ~ T s ) .  
Equation (11) then becomes 

Here 

iOT:A' + 7RO2 A ' --/3nA'[A'] s = ia1~A'  + i 7 1 0 2 A  '. 

o n = ~  T - - ?  122 + ( 1 +  v + a ) s  12+ Q , 

(i2) 

3 7r s (a + ~-)(a + 1) f~2 + I 7r s 
~z = 7 f - 7  ~s  + (1 + 7 + ~)s ,  9R = E l '  
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7n = ~ - 2 (~ + a 7  + 7 ) ~  2 + ~7(1 + 7 + ~)  
~ [ ~ s  + (1 + 7 + ~)s] , 

71 = 2 (a + T)(1 + r + a + Ta) 
~2 + (1 + ~ - + ~ ) 2  



Thus, the amplitude equation becomes a nonlinear Shroedinger equation (NSE) with per turbat ion 
on the right side. We note that  the coefficient values in this equation do not coincide with those given by 
Brether ton and Spiegel [10], who studied an equation of the type (11) obtained by the method of expansion 
of a linear dispersion relation in the neighborhood of a critical wavenumber. 

It is known [11] tha t  for a dissipatively per turbed NSE, perturbat ion changes the form of solutions only 
slightly. As a result, as the perturbing terms tend to zero, these solutions become solutions of an NSE with 
no per turbed right side, which can be solved in general form by the method of the inverse dissipation problem 
[7]. If all NSE has soliton solutions (both envelope solitons and solitons above a field of finite density), Eq. 
(12) has solutions of the same form with rather  small perturbing terms. The type of NSE is determined by 
the sign of the second derivative. In this case, the sign of the coefficient 7R varies from zero to infinity with 
change in f~. Hence, in the problem considered, two types of NSE are possible: 

- -  for ~ -+ O, 

20"7" ~-1  + (1 -- 2(7 + O + 70) 2rCr ) 
~tR=-l+r+'o (l+r+o)'-' +(1+r+o) a ~+o(~a)' 

~ = 2 +  2 ( ro ) rcr - 1 + 1 + r + o 1 + 'r~-  o O(~2);  

- - f o r  ~ ---+ oo, 

"YR = ~ - 2( r  + 0 + r o ) ~  -1 + O(~-3 ) ,  ~/I = 2(r  q- O)(1 + r + o + r a ) ~  -2 § O(~-4) .  

In the limit ~ = 0, the coefficient 7R becomes infinity and Eq. (12) loses meaning. This limiting case corre- 
sponds to the double zero point of the dispersion relation. The amplitude equation in the sS-neighborhood of 
this point will be deduced below. As ~ increases from zero to infinity, 7R changes sign, whereas "YI decreases 
monotonically, remaining always positive. The frequency ~0 at which 7R vanishes is determined from the 

formula 

~5 ~ ( 1 + 0  2 + r  2) 1 +  ( 1 + ~ 2 + r 2 ) 2  - 1  . 

For rather  large o or small r,  this formula has the asymptotic form Q2 0 ~ 2r0(1 + r + o) / (1  + r 2 + o2). 
7. T r a n s f o r m a t i o n  to  a N o n l i n e a r  S h r o e d i n g e r  E q u a t i o n .  We consider two cases where the 

amplitude equation derived above becomes an NSE. Using the substitution 

A = Vial~OR exp [ - i ( aR  + aip2)T2]F(alT2, a/X/-~RX),  

where p is a positive constant, we bring Eq. (12) to the form 

iFT + F x x  - F(IFI 2 - p 2) = irlF + i # F x x ,  (13) 

where # = 7*/7n. Here and below, the subscripts T and X denote partial derivatives with respect to the slow 
time T2 and the X coordinate, respectively. The coefficient # tends to zero with increase in Q according to 
the asymptotic  relation > ~ 2(r  + o)(1 + r + o + r a ) D  -a.  In addition, in the immediate vicinity of the Hopf 
bifurcation point (in the e a neighborhood), the first term on the right side of Eq. (13) can be eliminated. 
The second term can also be ignored if the frequency f~ is sufficiently high. As a result, Eq. (12) becomes 

the NSE 

iFr  + F x x  - F(IF[ 2 - p 2) = 0. 

This equation has solutions that  are known as solitons of finite density or "dark" solitons [12]: 

exp(i()  + exp �9 IF[2 = p2( 1 sin2 (~ /2) )  
F = p  l + e x p r  ' cosh 2 ~  ' 

(I) = - p T s i n  ( 4- (X - )2o) x / ~ s i n  (~/2). 

(14) 
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The parameters r and X0 characterize the width and initial position of the solitom respectively. 
Thus, the present investigation shows that for the physical system considered, along with other so- 

lutions, there can be solutions of the type of "dark" solitons, and this is true in the limit of high Hopf 
frequencies. Apparently, double-diffusive convection at high Hopf frequencies can occur in ocean systems. 
An example of these systems is a so-called thermohaline staircase [13]. Inversions of a thermohaline staircase 
often have stratification parameters, which correspond to the beginning of diffusive convection, and the Hopf 
frequency f~ is of the order of 103-105. 

When the Hopf frequency tends to zero, Eq. (12) takes a different asymptotic form. In this case, we 
set 

Then, 

A = exp ( - iaRT2)F(alT2,  ~ X ) .  

iFT -- F x x  - F[F[ 2 = i~TF + i # F x x ,  

where p has the following low-frequency asymptotic form: 

- -  m . 

7a l+r+a 

Thus, # --+ 0 as Q -~ 0. As in the previous case, the first term on the right side of the equation can be 
eliminated by assuming that the system is in the immediate vicinity (in the z3 neighborhood) of the Hopf 

bifurcation point. Then, again, Eq. (12) tal(es the form of an NSE: 

iFT = Fxx + FIE[ 2. 

This equation has well-known solutions in the form of envelope solitons. 

It is interesting that localized wave packets, with which soliton solution can be compared, were observed 

in experiments on convection of binary mixtures at rather low Hopf frequencies (see, for example, [14, 15]). 

8. Equations at the Taylor Bifurcation Points and Double Zero Point. %Ve consider the 

case of Taylor bifurcation or bifurcation to steady drum-type convection. On the straight line on which this 
bifurcation occurs, the dispersion relation has a first-order root. For terms of the order of O(e2), the equation 
has the form 0T~A = 0, i.e., the amplitude does not depend on the slow variable T1. For terms of the order 
of O(~ 3) of the functions Q3, we obtain the expressions 

37r 7a~r2 2 
9 aTr4[r:~(~ s _ ~) _ ~s]d + - ~  OT~_A -- - - - ~  ~:~d, QA3 = 

Q T 3 = -~-~ ( A I A ] 2 + ~_ OT~_ A - "~2 . ~ -~-i~ OT'2 A -- -~-E~ 2 

Substituting these formulas into the compatibility condition, we have the amplitude equation 

OT2A = ~3A - 33AIAI 2 - %0.~, A, (15) 

where 

3 2 r~(~IS - ~) - US ~2 r~(l - T 2) -- i 
a3 = ~ ~ r r~(l -- T) -- (I + T/#)' /33 = 4-7 r~(l -- z) -- (I + T/~)' 

4T 
73 = r~(l - w) - (I + v/a)" 

This equation is similar in form to the equation derived in [2] and reduces to it if a salinity gradient is absent. 
We consider the z 2 neighborhood of the point of intersection of the straight lines on which Hopf and 

Taylor bifurcations are observed. At this point, the dispersion relation has a second-order root (Takens- 
Bogdanov bifurcation). As noted above, for the case of the most unstable convective mode, the equation 
obtained for terms of the order of O(~ 2) is satisfied identically. Therefore, it is not necessary to use the 
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variable T2 or to introduce other slow variables. For terms of the order of O(a 3) of the functions Q3, we 
obtain the expressions 

QA3 = 
97r 4 iTr 7a~'2 2 

4(1 - v) [(a + 1)T]s - (1 + a/w)~?]d - ~ Oxl OT, A -- ~ O.,q d, 

" 2 80 A- 2o O ,A) + oxl O lA, QT3 = 6-~--~ ( AIAI2 - -~-~4 T~2 - 

_ 8 + 2 
Qs3 6rTv ~ ~ ~ ~ Ox, OT, A. 

After substi tution of these expressions into the condition of the absence of secular terms, we obtain the 
equation 

where 

O~.I A - c~ 02~ A = a2A + 82A]At 2, (16) 

3 7r4, 9 (i + a/z)7/- (i + a)TIs d-  2=7 

Equations of this type are known as ~4-equations, and they cannot be integrated accurately by the 
method of the inverse dissipation problem [7]. Some papers [16-18] consider amplitude equations at the 
double point for the convection of binary mixtures. According to [19], the results obtained for thermohaline 
convection are extended to the case of convection of binary mixtures, where it is necessary to allow for 
the thermodiffusion effect. Therefore, for the last case, all the equations at bifurcation points derived in 
the present paper are valid with the parameters of the problem converted accordingly (Prandtl,  Lewis, and 
Rayleigh numbers). Knobloch [18] obtained an amplitude equation at the double zero point that  has the form 
0 2 A  = CIA + C2AIA[ 2 in the main order in ~ (Ca and 62 are constants). Equation (16) can be regarded as 
its extension to the case of spatial modulations. Brand et al. [16] gives another amplitude equation at the 
double zero point, which includes a term with a third derivative of the form OtO~A. Therefore, it differs from 
the equations derived by the multiple-scale expansion method used in the present paper. 

9. C o n c l u s i o n s .  1. Tile derivative expansion method is used to derive amplitude equations for a 
system with thermohaline convection in the neighborhood of the main bifurcation points characteristic of 
this system. In particular, within the framework of a unified approach, we obtained the complex Ginzburg-  
Landau equation (11) in the case of Hopf bifurcation, the Newell-Whitehead equation (15) in the case of 
Taylor bifurcation, and Eq. (16) of the ~z 4 type in the neighborhood of the double zero point of the dispersion 
relation. 

2. Analytic expressions for the coefficients of the equations considered are given. For the equation in 
the neighborhood of the Hopf bifurcation points, the formulas specifying its coefficients refine the previous 
results of [10]. For the other two equations, such formulas, as far as we know, have not been previously 
reported in the literature. 

3. It is shown that ,  for low and high frequencies, the amplitude equation in the neighborhood of the 

Hopf bifurcation points reduces to the per turbed nonlinear Shroedinger equations (12) with characteristic 
solutions in the form of envelope solitons. In the high-frequency limit, the type of "dark" solitons (14) are 
characteristic of the examined physical system. 

4. The equation of the type of ~z 4 derived at the double zero point of the dispersion relation can 
be regarded as an extension of the equation obtained in [18] to the case of slow spatial modulations of the 
amplitude. 
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